Generation of strongly regular graphs from quaternary complex Hadamard matrices
نویسندگان
چکیده
منابع مشابه
Generation of Strongly Regular Graphs from Normalized Hadamard Matrices
This paper proposes an algorithm which can be used to construct strongly regular graphs from Hadamard matrices.A graph is strongly regular if there are integers and such that every two adjacent vertices have common neighbours and every two non adjacent vertices have common neighbors. Proposed method is mainly based on basic matrix manipulations. If the order of the normalized Hadamard matr ix i...
متن کاملHadamard Matrices and Strongly Regular Graphs with the 3-e.c. Adjacency Property
A graph is 3-e.c. if for every 3-element subset S of the vertices, and for every subset T of S, there is a vertex not in S which is joined to every vertex in T and to no vertex in S \ T. Although almost all graphs are 3-e.c., the only known examples of strongly regular 3-e.c. graphs are Paley graphs with at least 29 vertices. We construct a new infinite family of 3-e.c. graphs, based on certain...
متن کاملNew Symmetric Designs from Regular Hadamard Matrices
For every positive integer m, we construct a symmetric (v, k, λ)-design with parameters v = h((2h−1) 2m−1) h−1 , k = h(2h − 1)2m−1, and λ = h(h − 1)(2h − 1)2m−2, where h = ±3 · 2 and |2h − 1| is a prime power. For m ≥ 2 and d ≥ 1, these parameter values were previously undecided. The tools used in the construction are balanced generalized weighing matrices and regular Hadamard matrices of order...
متن کاملNew Constructions of Quaternary Hadamard Matrices
In this paper, we propose two new construction methods for quaternary Hadamard matrices. By the first method, which is applicable for any positive integer n, we are able to construct a quaternary Hadamard matrix of order 2 from a binary sequence with ideal autocorrelation. The second method also gives us a quaternary Hadamard matrix of order 2 from a binary extended sequence of period 2 − 1, wh...
متن کاملA class of quaternary noncyclic Hadamard matrices
A normalized Hadamard matrix is said to be completely noncyclic if no two row vectors are shift equivalent in its punctured matrix (i.e., with the first column removed). In this paper we present an infinite recursive construction for completely noncyclic quaternary Hadamard matrices. These Hadamard matrices are useful in constructing low correlation zone sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ceylon Journal of Science
سال: 2018
ISSN: 2513-230X,2513-2814
DOI: 10.4038/cjs.v47i1.7488